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1 Why, how, and considerations
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Todayʼs agenda
Hereʼs a short description of what you will learn
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● Current shared memory allocations are 11 min/max once PG has started

● Unmapping of complex data structures is complicated

● Amdahlʼs Law

Efficient resource scalability is key

Why
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● Current shared memory allocations are 11 min/max once PG has started

● Unmapping of complex data structures is complicated

● Amdahlʼs Law

○ Ex: If you need 1 KiB of static metadata to maintain each 8 KiB page, 
then you will only be able to scale resource usage from 9GB to 1GB; not great if you want to scale up 
by 100x.

○ PG's per-buffer overhead is 148B

Efficient resource scalability is key

Why

BufferDescPadded *BufferDescriptors 64 B /buffer

CkptSortItem *CkptBufferIds 20 B /buffer

ConditionVariableMinimallyPadded *BufferIOCVArray 16 B /buffer

HTAB *SharedBufHash ≥48 B /buffer

total ≥148 B /buffer 5



● Improve layouts

○ Reduce alignment losses

○ Reduce field sizes

■ *ptr → array offsets

● Change tooling

○ Replace dynahash

● Deduplicate data

How
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Size is not the only factor

● Pointer dereferences can be expensive

○ Cache misses are more than reading 
sequential bytes

○ Predictable memory accesses are key

● Highly volatile cache lines should be avoided in 
read-only paths

Considerations
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Buffer manager
Current allocations *= shared_buffers
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Buffer manager
Current allocations *= shared_buffers
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Buffer manager → dynahash.c
Pointer chasing to the extreme
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Requirements
● Shared memory

○ Lock partitioning

● Simple

● Partitioning should still allow resource sharing across 
partitions

Preferences
● Low size overhead

● Low/no alignment losses

● No avoidable cache misses

Replace buffer hash table
Less indirections in the same space
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Requirements
● Shared memory

○ Lock partitioning

● Simple

● Partitioning should still allow resource sharing across 
partitions

● Stable references

Preferences
● Low size overhead

● Low/no alignment losses

● No avoidable cache misses

Replace buffer hash table
Less indirections in the same space
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Features
● Hash entry lookup with two offset pointers

○ Optimistically, single offset pointer lookup

● 24B/element overhead, 8B alignment

Issues Features
● No dynamic (re)allocations when it's full

○ Hard error when inserting into full table, no silent 
shmem consumer.

New hash table layout
Bucket/chained hash table
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Features
● Hash entry lookup with two offset pointers

○ Or, optimistically, single offset pointer lookup

● 12B/element overhead, 4B alignment

Issues Features
● No dynamic (re)allocations

New hash table layout
Bucket/chained hash table
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New element placement algorithm 
Let's insert value 1
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New element placement algorithm
1 mod 8  1 → bucket 1
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New element placement algorithm 
Element in the slot co-allocated with bucket 1 is full
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New element placement algorithm 
Free-list lookup is expensive, non-local, and happens to be empty
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New element placement algorithm 
Instead, check cache line -local element slots first for empty slots
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New element placement algorithm 
Inserted on bucket pointer's cache line, saving cache misses.
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Questions?
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Resizing BufTable's hash entry
Hash entry is still 60% of BufTable's size
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Resizing BufTable's hash entry
BufferTag is equal to BufferDesc's
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Resizing BufTable's hash entry
Remove BufferTag from BufTableEntry

→ instead use Buffer as offset pointer to BufferDesc's BufferTag
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Resizing BufTable's hash entry
BufferDesc has high update rate on content_lock
→ tag lookup is expensive, because of cache line contention
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Resizing BufTable's hash entry
Move BufferTag completely out of line

→ Reduces gains from patch (bufferDesc will be padded to 64B, but reduces false sharing
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Questions?
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Resizing BufferTag
Most of the BufferTag is likely repeated across many buffers
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Resizing BufferTag
Move that into its own registry
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Resizing BufferTag
ChckPtSortItem nearly contains a BufferTag
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Resizing BufferTag
So deduplicate that too
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Questions?
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Ideal* state of shared_buffers-scaled shmem
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Was: 148 bytes 
/shared_buffers

New: 116 bytes 
/shared_buffers,
+ new separately scaled 
16B /RelFileForks.



"PROCLOCK hash" LockMethodProcLockHash → PROCLOCK 64  24 B
● Tracks which backends are responsible for which LockMethodLockHash entry. 
● Sized to 2 * max_locks_per_xact * MaxBackends + max_prepared_xacts)

○ ... but also grows bigger, because of dynahash

● Contains heavyweight lock info, one entry for every locked object's distinct lo
● Sized to max_locks_per_xact * MaxBackends + max_prepared_xacts)

○ ... but can grow larger than that, because dynahash auto-extends when it's full while 
ShmemAllocNoError allocates new shared memory 🙁

"LOCK hash" LockMethodLockHash → LOCK 152  24 B

Lock manager
A tale of two dynahash tables
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But we're already at max_locks_per_xact in the 
backend, why is this 2x multiplier even relevant?



● Dynahash is not great for shmem

○ Significant overhead 24 B / max_elements)

● Replace with new bucket hash → save 812B /element

○ Lose resizing (finally get max_locks_per_xact limit applied, or at least globally)

LOCK 152  16 B

PROCLOCK 64  16 B * 2
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Lock manager
A tale of two dynahash tables



● Resize MAX_LOCKMODES -sized slots to actual bounds 10  8 elements ea., saving 16B 
total)

● Pack padded LOCK fields, saving 8B more

LOCK 128  16 B

PROCLOCK 64  16 B * 2
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Lock manager → LOCK



● Use ProcNumber instead of PGPROC * → - 8 B

● Pack PROCLOCK into alignment in hash table element header → 8B

● Stop doubling the PROCLOCK table size → /2

LOCK 128  16 B

PROCLOCK 48  16 B
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Lock manager → PROCLOCK



● Use ProcNumber instead of PGPROC * → - 8 B

● Pack PROCLOCK into alignment in hash table element header → 8B

● Stop doubling the PROCLOCK table size → /2

LOCK 128  16 B

PROCLOCK 48  16 B
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Lock manager → PROCLOCK



LOCK 152  24 B  128  16 B

PROCLOCK 64  24 B * 2  48  16 B
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Lock manager



Thank you!
Questions? Feedback?
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