
Allocating responsibly
Reducing overhead in shared memory structs

Matthias van de Meent / @mmeent_pg@fosstodon.org

1 Why, how, and considerations

2 Buffer manager

3 Lock tables

Todayʼs agenda
Hereʼs a short description of what you will learn

2

● Current shared memory allocations are 11 min/max once PG has started

● Unmapping of complex data structures is complicated

● Amdahlʼs Law

Efficient resource scalability is key

Why

3

● Current shared memory allocations are 11 min/max once PG has started

● Unmapping of complex data structures is complicated

● Amdahlʼs Law

○ Ex: If you need 1 KiB of static metadata to maintain each 8 KiB page,
then you will only be able to scale resource usage from 9GB to 1GB; not great if you want to scale up
by 100x.

Efficient resource scalability is key

Why

4

● Current shared memory allocations are 11 min/max once PG has started

● Unmapping of complex data structures is complicated

● Amdahlʼs Law

○ Ex: If you need 1 KiB of static metadata to maintain each 8 KiB page,
then you will only be able to scale resource usage from 9GB to 1GB; not great if you want to scale up
by 100x.

○ PG's per-buffer overhead is 148B

Efficient resource scalability is key

Why

BufferDescPadded *BufferDescriptors 64 B /buffer

CkptSortItem *CkptBufferIds 20 B /buffer

ConditionVariableMinimallyPadded *BufferIOCVArray 16 B /buffer

HTAB *SharedBufHash ≥48 B /buffer

total ≥148 B /buffer 5

● Improve layouts

○ Reduce alignment losses

○ Reduce field sizes

■ *ptr → array offsets

● Change tooling

○ Replace dynahash

● Deduplicate data

How

6

Size is not the only factor

● Pointer dereferences can be expensive

○ Cache misses are more than reading
sequential bytes

○ Predictable memory accesses are key

● Highly volatile cache lines should be avoided in
read-only paths

Considerations

7

Buffer manager
Current allocations *= shared_buffers

8

Buffer manager
Current allocations *= shared_buffers

9

Buffer manager → dynahash.c
Pointer chasing to the extreme

10

Requirements
● Shared memory

○ Lock partitioning

● Simple

● Partitioning should still allow resource sharing across
partitions

Preferences
● Low size overhead

● Low/no alignment losses

● No avoidable cache misses

Replace buffer hash table
Less indirections in the same space

11

Requirements
● Shared memory

○ Lock partitioning

● Simple

● Partitioning should still allow resource sharing across
partitions

● Stable references

Preferences
● Low size overhead

● Low/no alignment losses

● No avoidable cache misses

Replace buffer hash table
Less indirections in the same space

12

Features
● Hash entry lookup with two offset pointers

○ Optimistically, single offset pointer lookup

● 24B/element overhead, 8B alignment

Issues Features
● No dynamic (re)allocations when it's full

○ Hard error when inserting into full table, no silent
shmem consumer.

New hash table layout
Bucket/chained hash table

13

Features
● Hash entry lookup with two offset pointers

○ Or, optimistically, single offset pointer lookup

● 12B/element overhead, 4B alignment

Issues Features
● No dynamic (re)allocations

New hash table layout
Bucket/chained hash table

14

New element placement algorithm
Let's insert value 1

15

New element placement algorithm
1 mod 8 1 → bucket 1

16

New element placement algorithm
Element in the slot co-allocated with bucket 1 is full

17

New element placement algorithm
Free-list lookup is expensive, non-local, and happens to be empty

18

New element placement algorithm
Instead, check cache line -local element slots first for empty slots

19

New element placement algorithm
Inserted on bucket pointer's cache line, saving cache misses.

20

Questions?

21

Resizing BufTable's hash entry
Hash entry is still 60% of BufTable's size

22

Resizing BufTable's hash entry
BufferTag is equal to BufferDesc's

23

Resizing BufTable's hash entry
Remove BufferTag from BufTableEntry

→ instead use Buffer as offset pointer to BufferDesc's BufferTag

24

Resizing BufTable's hash entry
BufferDesc has high update rate on content_lock
→ tag lookup is expensive, because of cache line contention

25

Resizing BufTable's hash entry
Move BufferTag completely out of line

→ Reduces gains from patch (bufferDesc will be padded to 64B, but reduces false sharing

26

Questions?

27

Resizing BufferTag
Most of the BufferTag is likely repeated across many buffers

28

Resizing BufferTag
Move that into its own registry

29

Resizing BufferTag
ChckPtSortItem nearly contains a BufferTag

30

Resizing BufferTag
So deduplicate that too

31

Questions?

32

Ideal* state of shared_buffers-scaled shmem

33

Was: 148 bytes
/shared_buffers

New: 116 bytes
/shared_buffers,
+ new separately scaled
16B /RelFileForks.

"PROCLOCK hash" LockMethodProcLockHash → PROCLOCK 64 24 B
● Tracks which backends are responsible for which LockMethodLockHash entry.
● Sized to 2 * max_locks_per_xact * MaxBackends + max_prepared_xacts)

○ ... but also grows bigger, because of dynahash

● Contains heavyweight lock info, one entry for every locked object's distinct lo
● Sized to max_locks_per_xact * MaxBackends + max_prepared_xacts)

○ ... but can grow larger than that, because dynahash auto-extends when it's full while
ShmemAllocNoError allocates new shared memory 🙁

"LOCK hash" LockMethodLockHash → LOCK 152 24 B

Lock manager
A tale of two dynahash tables

34

"PROCLOCK hash" LockMethodProcLockHash → PROCLOCK 64 24 B
● Tracks which backends are responsible for which LockMethodLockHash entry.
● Sized to 2 * max_locks_per_xact * MaxBackends + max_prepared_xacts)

○ ... but also grows bigger, because of dynahash

● Contains heavyweight lock info, one entry for every locked object's distinct lo
● Sized to max_locks_per_xact * MaxBackends + max_prepared_xacts)

○ ... but can grow larger than that, because dynahash auto-extends when it's full while
ShmemAllocNoError allocates new shared memory 🙁

"LOCK hash" LockMethodLockHash → LOCK 152 24 B

Lock manager
A tale of two dynahash tables

35

But we're already at max_locks_per_xact in the
backend, why is this 2x multiplier even relevant?

● Dynahash is not great for shmem

○ Significant overhead 24 B / max_elements)

● Replace with new bucket hash → save 812B /element

○ Lose resizing (finally get max_locks_per_xact limit applied, or at least globally)

LOCK 152 16 B

PROCLOCK 64 16 B * 2

36

Lock manager
A tale of two dynahash tables

● Resize MAX_LOCKMODES -sized slots to actual bounds 10 8 elements ea., saving 16B
total)

● Pack padded LOCK fields, saving 8B more

LOCK 128 16 B

PROCLOCK 64 16 B * 2

37

Lock manager → LOCK

● Use ProcNumber instead of PGPROC * → - 8 B

● Pack PROCLOCK into alignment in hash table element header → 8B

● Stop doubling the PROCLOCK table size → /2

LOCK 128 16 B

PROCLOCK 48 16 B

38

Lock manager → PROCLOCK

● Use ProcNumber instead of PGPROC * → - 8 B

● Pack PROCLOCK into alignment in hash table element header → 8B

● Stop doubling the PROCLOCK table size → /2

LOCK 128 16 B

PROCLOCK 48 16 B

39

Lock manager → PROCLOCK

LOCK 152 24 B 128 16 B

PROCLOCK 64 24 B * 2 48 16 B

40

Lock manager

Thank you!
Questions? Feedback?

41

